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Abstract 

Coastal environments are featured by high variability, where geomorphological, biological and 

physical variables show significant spatial and temporal variations induced by both natural and 

anthropogenic forcing. In particular, sandy coasts are the most vulnerable as they exhibit large 

responses to low-frequency but high impact/extreme events, such as storm surge flooding events. 

Against the complex interactions occurring at the land-sea interface, coastal managers and policy 

makers are increasingly calling for new integrated approaches and tools able to support a multi-

scenario evaluation of environmental risks arising from natural and human-induced stressors 

acting in concert on the same coastal targets (e.g. urban areas, coastal communities and 

ecosystems). The Integrated Coastal Zone Management (ICZM) approach represents a valuable 

tool to resolve these issues, providing a structured framework and principles to reduce impacts 

due to short and long-term pressures, and provide support to sustainable and integrated shoreline 

management. In the frame of the task 3.5 ‘Development of the framework and tool for final users 

with training’, this report provides an overview of the main tools and methods providing support 

to policy and decision makers in the implementation of European recommendations and directives 

for coastal zone risk assessment and management. A set of 44 tools were selected and sorted in 

indicator and index-based, GIS-based DSS, remote sensing-based methods exploiting potential 

posed by satellite imagery and Bayesian Network approaches. These methods, with a different 

level of complexity and detail in the data processing and final outcomes, allow identifying areas 

and receptors at higher coastal erosion risk, and to simulate future climate and management 

scenarios, thus allowing to explore the effects induced by multiple measures and climate 

conditions, with the final aim of supporting the development and implementation of more robust 

and adaptive coastal erosion risk-based management strategies. A selection of these tools will be 

applied in the frame of the TRITON pilot cases, in order to evaluate coastal erosion processes and 

provide the scientific means for cross border operational plan for ICMZ implementation across 

Greece and Italy. 
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1. Introduction  

Rising sea level and extreme events related to climate change are causing severe threats to coastal 

areas, affecting both natural and human systems worldwide (IPCC, 2018). Located at the land-sea 

interface, climate-related impacts will be especially relevant in coastal areas, where a dense 

interaction between terrestrial and marine systems occurs (IPCC, 2013a). Coastal areas are expected 

to undergo increasingly intense climate-related impacts and even more severe extreme events. 

Specifically, rising sea levels, changes in the dynamics and energy distribution of waters, as well as 

variations in the pattern, frequency and intensity of extreme events are expected to increase future 

coastal flooding and erosion (MATTM, 2017). Foreseen results consist in diffused environmental and 

socio-economic damages including the disruption of urban assets and loss of valuable natural areas 

(EEA, 2017; IPCC, 2014). In this already complicated scenario, coastal areas are also experiencing 

relevant pressures resulting from multiple human-induced stressors linked with coastal economic 

development (e.g. touristic activities and infrastructures along the shoreline) and the connected 

land use changes (e.g. urbanization) (Ramieri et al., 2011). As a consequence, the assessment and 

management of coastal erosion risks represents a complex task due to the high number of 

environmental and socio-economic factors at stake, as well as the variety and complexity of 

interactions that may occur among climate-induced and anthropogenic pressures affecting the 

same area (Ramieri et al., 2011). 

Building on the widely applied Driving force, Pressure, State, Impact, Response –DPSIR- framework 

(Bidone and Lacerda, 2004; Kristensen, 2004), different tools and methods have been developed so 

far by the research community in order to provide support in the analysis of coastal erosion risk 

arising from multiple scenarios, including different management and policy setting, as well as 

climate conditions. In particular, these tools can be applied both to identify risk-prone areas and 

receptors and to simulate scenarios, thus allowing to explore the effects induced by different 

measures, with the final aim of supporting the development and implementation of coastal erosion 

risk-based policies, robust enough against uncertainties and changes over time. 

In the frame of the task 3.5 ‘Development of the framework and tool for final users with training’, a 

DPSIR-based conceptual framework was developed in order to disentangle the complex interactions 

underpinning coastal erosion phenomena, by defining the relationships between natural and 

anthropogenic activities, the coastal environment and its ecosystems, and the resulting 

environmental, physical and socio-economic impacts. Moreover, to operationalize the designed 

DPSIR-based framework, and provide support in the risk analysis across the TRITON Pilot cases 

(WP4), an in-depth review of tools and methods dealing with coastal erosion risk mapping and 

management was also performed, leading to the selection of a set of 44 ‘key tools’. Selected tools 

were categorized according to 4 main family of tools (i.e. i) indicators and index-based method; ii) 
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GIS-based Decision Support Systems; iii) Remote sensing techniques for shoreline detection; iv) 

Bayesian Networks approaches) and then compared and discussed based on set of comparison 

criteria (e.g. type of data used for the application of the tool; study area; timeframe scenarios 

considered in the assessment).  

Accordingly, the Section 2 of this document provides a detailed description of the designed DPSIR-

based conceptual framework for coastal erosion risk analysis and management, identifying, in a 

systematic way, the complex relationships between sources and consequences of coastal erosion 

processes. Then, the Section 3 focuses on the review of the state of art tools and methods for coastal 

erosion risk mapping and appraisal, including indicators and index-based methods (Paragraph 3.1), 

GIS-based Decision Support Systems (DSS; Section 3.2), Remote sensing techniques (Section 3.3) 

and Bayesian Networks approaches (BN; Section 3.4).  
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2. Conceptual framework for coastal erosion risk assessment and management 

Over the last decades numerous and diverse issues leading to ecological implications have 

challenged both environmental scientists and decision-makers in the understanding of the 

relationships between social/economic interests and the associated environmental issues, requiring 

practical evaluation techniques building on interdisciplinary approaches (Neves et al., 2008). 

Risk assessment is a rather complex procedure that can help analyzing and managing a wide range 

of environmental issues, including those related to climate change (Davies & Hope, 2015; Lavasani 

et al., 2015; Torresan et al., 2016). In many countries and institutions different risk assessment 

methodologies have been developed in order to understand processes underpinning coastal erosion 

risks (Falck et al., 2000; Bolado et al. 2012; Skogdalen & Vinnem 2012). Most of these methods apply 

a stepwise (and cyclic) approach, starting from the definition of the problem, toward the risk 

identification, analysis and evaluation (ISO, 2009; Defra, 2011). Provide a road map for decision-

makers is the final purpose of the methodologies, toward a structured analysis of the complex array 

of considerations underlying environmental decisions (Marcomini et al., 2010; Defra 2011). 

Particularly, the definition of the issue of concern, including the identification of all relevant threats 

(sources of risk), the potential exposure pathways and the harm (losses) that might result from 

exposure to hazard (impacts), is the first step for an effective risk assessment. In fact, a clear 

definition of the problem, can help selecting the level and types of methodologies to be applied 

across the different phases of the risk assessment process (Defra, 2011).  

The development of a conceptual framework may help formalizing the issue at hand, showing, in a 

systematic way, the relationships between the natural and anthropogenic sources of risk, the 

exposed coastal targets (e.g. coastal dunes, infrastructures and touristic activities) and the resulting 

environmental, physical and socio-economic impacts. Moreover, conceptual models provide a 

schematic representation of the limits of the analyzed system (e.g. Defra, 2011) and may help 

identifying all data sources (physical, environmental and socio-economic information) required to 

evaluate and understand the multidisciplinary nature of risk (Baldi et al., 2010). In this setting, The 

DPSIR framework developed by the European Environmental Agency (EEA, 1995), with the aim of 

describing the relationships between the origins and consequences of environmental issues (EEA, 

1999; Kristensen, 2004; Khajuria & Ravindranath, 2012), has been widely applied in multiple science 

domains for supporting the conceptualization of risk assessment problems (Kelble et al., 2013). The 

framework is an extension of the Pressure-State-Response model (PSR model), developed by the 

Organization for Economic Co-operation and Development (OECD, 1970) to assess the 

environmental performance by using key indicators (Khajuria and Ravindranath, 2012).  
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As represented in Figure 1, the DPSIR framework defines a chain of causal links starting with the 

identification of the ‘driving forces’ representing the 

natural and anthropogenic forces which can drive 

variations in the state of the environment and/or human 

systems. Driving forces, in turn, may exert intentionally or 

unintentionally ‘pressures’. Pressures can broadly be 

described as the means through which drivers are actually 

expressed i.e, in the way they may interfere and perturb 

the environmental and socio-economic systems (Neves et 

al., 2008). They can vary among geographic regions, spatial 

and temporal scales causing changes in the ‘state’ of the 

exposed systems. Finally, changes in the state of the 

analyzed system can produce several ‘impacts’ on the 

environment, human health and activities, eventually leading to ‘responses’, including the re-

evaluation of current management policies and, eventually, the setting on of new measures 

(Kristensen, 2004). Therefore, the DPSIR framework represents a useful tool to identify and classify 

drivers and pressures at different temporal and spatial scales, and for providing a first-pass 

screening of potential response management measures and planning strategies.  

Drawing on this, a DPSIR-based approach is here proposed to formalize the issue of concern of the 

TRITON project (i.e. coastal erosion), clarifying the possible factors involved in the risk analysis by 

identifying the main cause-effect relationships and interactions between climate-related and 

anthropogenic pressures, the exposed coastal systems and the resulting environmental, physical 

and socio-economic impacts. Figure 2 depicts the designed DPSIR-based framework considering 

both natural (e.g. solar irradiance and volcanic aerosol changes) and anthropogenic drivers (e.g. 

population growth and urbanization, land surface changes, socio-economic development), 

contributing together to shape the global climate system (IPCC, 2013). In turn, these drivers 

contribute to oceanographic (e.g. winds, tidal range, sea-level rise, wave, storms, coastal currents) 

and anthropogenic pressures (e.g. tourism, settlement, coastal development, extraction of 

resources, industries and shipping transports) inducing changes in the state of environmental and 

human systems exposed (e.g. buildings, infrastructures and people). Specifically, strong tides, waves 

and winds can lead to structural and physical impacts on buildings and infrastructures (e.g. collapse 

and disruption of bridges, roads and buildings close to the coast), as well as socio-economic impacts 

on the activities located at the land-sea interface (i.e. tourism, aquaculture and harbor activities). 

Similarly, natural ecosystems can be affected as well by both anthropogenic and oceanographic 

pressures. In fact, costal currents, sea-level rise and storms and, on the other hand, the extraction 

of resources from the seabed, coastal development and shipping transport can negatively affect 

Figure 1: DPSIR conceptual framework 
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coastal ecosystems, causing shoreline retreatment, coastal slope variation and changes in the water 

quality (environmental and physical impacts), resulting, in concert, in an overall reduction in the 

ecosystem services flow (socio-economic impacts). People can be affected as well by the considered 

pressures as a result of coastal extreme events and also landslides. Finally, as possible responses to 

these impacts, some examples of adaptation (e.g. coastal zone planning, construction of artificial 

protection like dams, beach nourishment) and mitigation measures (e.g. fuel substitution, 

conversion of land use, energy taxes and subsidies) are proposed in the conceptual framework in 

Figure 2, which should be taken into account in order to reduce coastal erosion risk, acting at 

different levels on drivers, pressures, states and impacts.  
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Figure 2: DPSIR-based Conceptual Framework for coastal erosion risk mapping and management 
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3. State of the art of tools and methods for coastal erosion risk assessment and 

management 

Several tools and methods supporting policy and decision makers in the implementation of 

European recommendations and directives for coastal zone management have been developed in 

recent years (UNEP, 2008; EC, 2013). Some of them represent a valuable support for the assessment 

of coastal vulnerability and risks against future climate change scenarios (e.g. rising sea level, coastal 

erosion, increase in extreme events such as storm surge flooding) and different socio-economic 

conditions (e.g. increase of population, land-use changes) (Ramieri et al., 2011). When focusing on 

coastal erosion processes, more or less sophisticated tools, ranging from indicators and index-based 

methods (e.g. Coastal Vulnerability Index –CVI) to more complex Decision Support Systems (DSS) 

(e.g. DESYCO, DIVA SimCLIM), remote sensing and Bayesian Network (BN) approaches, can be 

applied for understanding processes underpinning the erosion phenomena. 

In the frame of the Task 3.5, a set 44 ‘key tools’ dealing with the analysis and management of coastal 

erosion risks were selected and deeply analyzed by the TRITON partners in order to provide useful 

information and practical examples of their effectiveness across different coastal case studies. 

Among these, 24 belong to more simple indicator- and index-based approaches, allowing, with a 

simple framework, to aggregate multiple heterogeneous variables into a single risk and vulnerability 

measure; 13 tools relate to DSS supporting decision making processes and facilitating end-users 

during data pre-processing and integration; finally 7 tools belong to Bayesian Network approaches 

supporting multiple ‘what-if’ scenario analysis of coastal erosion risk. 

Selected tools for coastal erosion risk assessment and management are summarized in the Table 1 

detailing the i) name/acronym of the tool as reported in the related publication; ii) objective of the 

assessment exercise as explained in the analyzed reference; iii) type of data used for the 

implementation of the proposed methodology; iv) timeframe scenarios considered in the 

assessment; v) study area and spatial scale of the analysis; vi) literature reference.  
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Table 1: Tools and methods for coastal erosion risk mapping and management selected by the TRITON partners 

Tools Name of tool Objective Type of data Scale / study area 
Timeframe 

scenarios 
Reference 

Indicator and 

index-based 

methodologies 

CVI Assessing coastal vulnerability to future sea level rise Geophysical and hydrologic N / U.S. coasts / Gornitz et al.,  1991 

CSoVI 
Assessing vulnerability in spatial terms using both 

biophysical and social indicators 

Biophysical, chemical, meteo-

climatic, socio-economic 

L / Georgetown 

County, South 

Carolina, US 

Flood hazards zones 

derived by FEMA's Q3 

flood data, RP: 100/500 

years 

Cutter et al., 2003 

PVI 
Assessment of physical and social vulnerability of US 

Coastal Counties 

Geophysical, hydrologic, socio-

economic 

N / US Coastal 

Counties 
/ Boruff et al., 2005 

Composite 

Vulnerability 

Index 

Vulnerability assessment of coastal natural hazards, 

introducing parameters for population affected by 

flooding or living in vulnerable areas, poverty and 

municipal wealth 

Geophysical, hydrologic, socio-

economic 

R / State of Parà, 

Brazil 
/ 

Szlafsztein & Sterr, 

2007 

CVI for sea level 

rise impacts 

Assessing vulnerability of coastal areas to sea level rise, 

introducing parameters related to climatic pressures and 

human-induced pressures 

Geophysical, hydrologic, meteo-

climatic, anthropic influence 
R / Goksu delta / Ozyurt et al., 2007 

Vulnerability 

Indicators for 

Ecosystems & 

Natural Resources 

Mapping climate change vulnerability in the Sydney 

Coastal Councils Group 

Geophysical, meteo-climatic, 

socio-economic 

L / Sydney Coastal 

Councils Group 

 Average, min and max 

temperature, average 

rainfall 2030 projections 

Preston et al., 2008 

Vulnerability 

Indicators for Sea-

Level Rise and 

Coastal 

Management 

Mapping climate change vulnerability in the Sydney 

Coastal Councils Group 
Geophysical, socio-economic 

L / Sydney Coastal 

Councils Group 
/ Preston et al., 2008 

CVI 

Introduction of a multi-scale approach used to provide 

spatial analysis of the degree of vulnerability, highlighting 

the implication of scale in the selection of indicators and 

the degree of simplification 

Geophysical, hydrologic, socio-

economic 

Multi-scale: 

 N, R, L 

 Northern Ireland 

/ 
Mclaughlin & 

Cooper, 2010 

/ 

Developed a vulnerability and resilience assessment tool 

in the ENSURE project context to understand strengths 

and fragilities of a given territory and community 

Physical, socio-economic L / Sondrio, Italy / Menoni et al., 2012 
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Tools Name of tool Objective Type of data Scale / study area 
Timeframe 

scenarios 
Reference 

CCFVI 

Development of a flood vulnerability index for coastal 

cities, including a politico-administrative sub-index 

alongside the hydro-geological and socio-economic sub-

indices 

Geophysical, hydrologic, meteo-

climatic, socio-economic, 

politico-administrative 

L / Casablanca (MA), 

Calcutta (IN), Dhaka (BD), 

Manila (PHL), Buenos 

Aires (ARG), Osaka (J), 

Marseille (FRA), Shanghai 

(CHN), Rotterdam (NL) 

/ Balica et al., 2012 

CSI Assessing the coastal sensitivity to sea level rise Geophysical R / Peloponnese (GR) / 
Karymbalis et al., 

2012 

SoVI 
Measuring Social Vulnerability to Natural Hazards in the 

Yangtze River Delta Region, China 
Socio-economic 

R / Yangtze River Delta 

Region, China 
/ Chen et al., 2013 

SVI 

Evaluate social vulnerability of individual cities, capturing 

at the same time the spatial development of the 

community 

Socio-economic L / Chiayi, Taiwan / Lee et al., 2014 

SVI 
Combining hazard and exposure with a social vulnerability 

index to provide lessons for flood risk management 
Hydrologic, socio-economic 

L / Rotterdam, The 

Netherlands 

Unembanked areas, B: 

2010; FS: 2050 

Temperature, river 

discharge, storm duration 

and SLR projections from 

KNMI'06 CC scenarios 

Koks et al., 2015 

CCI 
Vulnerability assessment for prliminary lood risk mapping 

and managemnt in coastal areas 

Geophysical, hydrologic, socio-

economic 

L / Ioninan coast of 

the Basilicata region, 

Italy 

Sea storm 

RP: 1/30/500 years 

Greco & Martino, 

2016 

CVI 
Assessing coastal vulnerability due to coastal erosion and 

SLR 
Geophysical N / Indian East coast / 

Ahammed et al., 

2016 

SVI 
Develope a methodology to assess the social vulnerability 

and its spatial distribution at the Italian national scale 
Socio-economic N / Italy / 

Frigerio & De Amicis, 

2016 

SVI 

Develope a GIS-approach to identify the spatial variability 

of social vulnerability associated to seismic hazards in 

Italy 

Socio-economic N / Italy / Frigerio et al., 2016 

CRI-LS Assess risk of climate-related hazards in coastal zones 
Geophisycal, meteo-climatic, 

socio-economic 
L / Tetouan SLR and SS RP: 100 years Satta et al., 2016 

CRI-MED 
Assess risk of climate-related hazards in coastal zones at 

the regional scale 

Geophisycal, meteo-climatic, 

socio-economic 
R / Mediterranean 

SLR and SWH RP: 100 

years 
Satta et al., 2017 

CVI 

Idetification of potential impacts, vulnerabilities and 

adaptation strategies for the oil and gas industry against 

climate-related impacts 

Physical, geological, socio-

economic 
N / Egyptian Coast 

SLR, B: 1993-2011; FS: 

2021-2050 and 2041-

2070 (under RCP4.5 and 

RCP 8.5 scenarios) 

Torresan et al., 2017 
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Tools Name of tool Objective Type of data Scale / study area 
Timeframe 

scenarios 
Reference 

SS, B: 1970-2000; FS: 

2010-2040 and 2070-

2100 RCP4.5 + RCP 8.5 

scenarios 

SVI 
Examine the spatiotemporal patterns of social 

vulnerability in Italy for years 1991, 2001, 2011 
Socio-economic N / Italy TP: 1991 / 2001 / 2011 Frigerio et al., 2018 

/ 
Assessment of societal resilience indicators using 

demographic and infrastructure data 
Socio-economic N / Germany / Fekete et al., 2018 

CVI and 

CVI vs. CSI 
Assessing the coastal vulnerability of climate change Geophysical, vegetation L / Apulian coastline / Pantusa et al., 2018 

Decision 

Support 

Systems (DSS) 

COSMO 
 Evaluate coastal management options considering 

anthropic forcing and climate change impacts 

Socio-economic, climatic, 

environmental, hydrological 
N / The Netherlands 100 years 

Rijsberman & van 

Velzen, 1996 

SimLUCIA 
assess the vulnerability of low-lying areas in the coastal 

zones and island to sea-level rise due to climate change 

Climatic, environmental, socio-

economic 
L / Saint Lucia 40 years (1990-2030) White et al, 1997 

RAMCO 

Reduce the gap between the present state and the 

desired state of the coastal zone and support the coastal 

zone manager(s) 

combines GIS with a dynamic 

system model for the 

(bio)physical and socio-

economic coastal-zone 

interactions 

L / Southwest 

Sulawesi, Indonesia 
2020 Kok et al., 2001 

WADBOS 

Support the design and analysis of policy measures in 

order to achieve an integrated and sustainable 

management 

Socio-economic, hydrological, 

environmental, ecological 
L / Wadden Sea 10 years scenario Engelen et al., 2005 

CVAT 
Assess hazards, vulnerability and risks related to climate 

change and support hazard mitigation options. 

Environmental and socio-

economic 

L / New Hanover 

County, Maui County, 

Rhode Island (USA) 

/ Flax et al., 2002 

KRIM DSS 

Determine how coastal systems reacts to climate change 

in order to develop modern coastal management 

strategies 

Climatic, socio-economic, 

ecological, environmental, 

hydrological 

L / Bremen (Germany) 2050 Kraft, 2003 

DITTY DSS 

Preservation, protection and improvement of the quality 

of the environment through a prudent and rational 

utilization of the natural resources 

biogeochemical, hydrodynamic, 

ecological, socio-economic 

models, GIS 

L / Sacca di Goro 

lagoon (Italy) 
2/3 years Mocenni et al., 2009 

IWRM DSS 
Explore potential risks on coastal resources due to climate 

and water management policies 

Climatic, environmental, socio-

economic, geomorphological 
N / Bangladesh / Zaman et al., 2009 

DIVA DSS 
Assessing coastal vulnerability and explore the effects of 

climate change impacts on coastal regions 

Climatic, socio-economic, 

geography, morphological 
L, N, R, G 2100 Hinkel & Klein, 2009 

SimCLIM 
Assessing impacts and risks of climatic extremes in a 

changing climate 
Hydrologic, climatic 

R / Southeast 

Queensland, Australia 
2050 Warrick, 2009 
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Tools Name of tool Objective Type of data Scale / study area 
Timeframe 

scenarios 
Reference 

Coastal Simulator 
Long-term assessments of potential coastal impacts and 

responses 

combines a geographical 

information system with a 

dynamic system model for the 

(bio)physical and socio-

economic coastal-zone 

interactions 

L / coast of Norfolk, 

UK 
100 years Mokrech et al., 2011 

THESEUS DSS 
Assess risk across a range of spatial and temporal scales 

to minimize coastal risk 
Social, environmental, economic L / Cesenatico, Italy 

2020 (short-term) 

2050 (medium-term) 

2080 (long-term) 

Zanuttigh et al., 

2014 

DSS DESYCO 
Assessment of vulnerability to natural hazards and 

climate change 

Climatic, biophysical, socio-

economic, geomorphological, 

hydrological 

L / Veneto, Friuli-

Venezia Giulia, 

Marche, Apulia (IT) 

2070-2100 
Torresan et al., 

2016b 

Remote 

sensing-based 

techniques 

Shoreline 

Identification 

Techniques 

Assessment and integration of conventional, RTK-GPS and 

image-derived beach survey methods for daily to decadal 

coastal monitoring 

Real-time kinematic (RTK)-GPS 

surveys 
L/Australia 2005-2008 Harley et al., 2010 

Assessment of beach and dune erosion and accretion 

using LiDAR: Impact of the stormy 2013–14 winter and 

longer-term trends on the Sefton Coast, UK 

LiDAR L/ Sefton Coast, UK 2013-2014 Pye and Blott, 2016 

Monitoring beach morphology changes using small-

format aerial photography and digital softcopy 

photogrammetry 

Aerial Photography -  - 
Hapke and 

Richmond,2000 

Science, technology and the future of small autonomous 

drones 

RPAS, unmanned aerial vehicles, 

UAVs, or drones 
- - 

Floreano and Wood, 

2015 

Automatic Measurement of Shoreline Change on Djerba 

Island of Tunisia 
Satellite Images L/Tunisia 1984-2009 

Bouchahma and 

Yan, 2012 

Shoreline 

Extraction 

Techniques 

Automatic Measurement of Shoreline Change on Djerba 

Island of Tunisia 
NDWI L/Tunisia 1984-2009 

Bouchahma and 

Yan, 2012 

Semi-automated construction of the Louisiana coastline 

digital land/water boundary using Landsat Thematic 

Mapper satellite imagery 

Single Band L/USA - 
Braud and Feng, 

1998 

Automatic Coastline Extraction Using Edge Detection 

and Optimization Procedures 
Edge Detection L/Greece 1929-2000, 

Paravolidakis et.al, 

2018 

Evaluation of 

Shoreline Change 

Analysis 

The Digital Shoreline Analysis System (DSAS) version 4.0-

an ArcGIS extension for calculating shoreline change 
DSAS US Geological Survey - Thieler et.al, 2009 
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Tools Name of tool Objective Type of data Scale / study area 
Timeframe 

scenarios 
Reference 

Bayesian 

Networks (BN) 

BN Assessment of long-term shoreline change due to SLR Geophysic and hydrologic N / US Atlantic coast 50/100 years 
Gutierrez et al., 

2011 

BN 
Predicting decadal-scale Chinese coastal erosion due to 

SLR 
Geophysic and hydrologic N / Chinese coast ‘What-if’ scenario Zhan et al., 2014 

BN 
Predicting coastal vulnerability to SLR and assessing the 

interactions between barrier and geomorphic variables 

Hydrodynamic, 

geomorphological 

R / Praia de Faro, 

Portugal 
RP: 50 years  

Poelhekke et al., 

2016 

BN 
Assessing coastal vulnerability to storm surge events 

causing erosion 

Geophysical, hydrological, socio-

economic, environmental, 

anthropic influence 

R / North Norfolk 

coast, UK 
‘What-if’ scenario Jäger et al., 2017 

BN 
Evaluate erosion risks and the effect induced by beach 

nourishment measures 

Physical, morphological, 

ecological, environmental, socio-

economic 

R / Ria Formosa, 

Portugal 
‘What-if’ scenario 

Plomaritis et al., 

2017 

BN 
Compare alternatives measures to reduce coastal risk in 

current and projected future scenarios 
Hydro-morphodynamics 

R / Tordera Delta, 

Spain and Lido degli 

Estensi-Spina, Italy 

2100 for the Tordera 

Delta case study - 2050 

for Lido degli Estensi case 

study 

Sanuy et al., 2018 

BERM-N 

Quantify the issue of coastal erosion and assess the 

effectiveness of different nourishment measures in 

counteracting coastal erosion 

Geomorphological N / Holland coast 5/10 years Giardino et al., 2019 
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In the following paragraphs, tools presented in the Table 1 are deeply analyzed providing more 

details about their technical features and some examples of their application across real coastal 

case studies. In particular, Paragraph 3.1 reports the review of indicators and index-based methods; 

Paragraph 3.2 is devoted to the description of models and DSS; Paragraph 3.3 focuses on remote-

sensing-based techniques used for the detection of the shoreline evolution; and, finally, Paragraph 

3.4 describes BN approaches, also providing some practical examples of their application across 

different coastal case studies.  

 

3.1 Indicator and index-based methodologies 

Different methodologies and tools for risk and vulnerability appraisal have been developed so far 

by the research community, with the main aim of identifying mostly affected coastal areas due to 

climate change. Among these, the most commonly applied is the Coastal Vulnerability Index (CVI), 

an easy to use index-based approach structured to support the integration and combination of 

multiple physical, morphological and socio-economic variables. The original CVI approach was 

introduced by Gornitz et al. (1991, 1994), integrating in a single index formulation a range of 

variables accounting for geological and physical processes, such as resistance to erosion, coastal 

evolution trends, geological coastal types. The coastal vulnerability is then classified according to 

the final value of the index, which derives from the mathematical multiplication of the forces 

contributing to rise vulnerability to climate-related impacts (e.g. erosion and/or inundation) 

(Equation 1).  

 

𝐶𝑉𝐼 = √ 
1

𝑛
(𝑎1 × 𝑎2 × ⋯ × 𝑎𝑛)      (Equation 1) 

 

where 𝑛 is the total number of variables 𝑎𝑖 considered in the study (e.g. geomorphology, coastal 

slope, shoreline erosion/accretion rates, relative sea-level change, mean significant wave height, 

mean tide range, dune, coastal distance, etc..). 

The CVI traditional version by Gornitz et al. (1991; 1994) was followed by many other authors which 

tailored the original framework according to the purposes of their analysis and specific traits of the 

investigated coastal areas (Abuodha & Woodroffe, 2006; Pendleton et al., 2005; Thieler & Hammar-

Klose, 2000). All these studies were mainly focused on coastal geo-physical processes, without 

investigating other significant phenomena induced by climate forcing and others socio-economic 

drivers contributing to rise coastal vulnerability. Looking at the Italian Apulia Region shoreline, we 

also recognize a CVI application to a stretch of the coast between the marinas of Torre Canne and 

Villa Nova, developed by Pantusa et al. (2018) at the local scale (Figure 3). The study was aimed at 
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detecting the most vulnerable shoreline 

segments to SLR, SS and wave action, in 

order to provide support for future coastal 

zone planning and management. 

Moving beyond these approaches, Ozyurt 

(2007) proposed an improvement of the 

traditional CVI, integrating in its application 

the evaluation of potential impacts induced 

by potential Sea Level Rise (SLR) scenarios. 

Specifically, the index consists of five sub-

indices corresponding to a specific impact 

induced by rising sea level (i.e. coastal 

erosion, flooding due to storm surge, 

inundation, salt water intrusion to 

groundwater resources, salt water intrusion to rivers/estuaries).  

Moreover, as the use of socio-economic indicators to measure community vulnerability to natural 

hazards was becoming more and more common, new CVI-approaches were developed, integrating 

indicators standing for the socio-economic and politico-administrative dimensions (e.g. Gross 

Domestic Product – GDP, presence of infrastructures, institutional organization) and community-

based adaptive capacity (e.g. percentage of young and foreign people, family income, access to 

communication networks). In fact, relationships occurring among different systems (i.e. climate, 

environmental and socio-economic) may strongly influence coastal vulnerability, contributing to rise 

the overall vulnerability of the analyzed coastal area (McLaughlin and Cooper, 2010). To this aim, 

Szlafsztein and Sterr (2007) introduced a Composite Vulnerability Index allowing combining 8 

variables reflecting the natural dimension of vulnerability (e.g. coastline length, coastal protection 

measures, fluvial drainage) with 7 other indicators used to depict and evaluate the socio-economic 

dimension. Specifically, among the socio-economic variables, indicators representing the 

population potentially affected by flooding, or living in vulnerable areas, as well as information 

about poverty conditions and municipal wealth were considered. The following year, Preston et al 

(2008) introduced in his CVI application a set of indicators supporting the spatial modelling of 

population adaptive capacity to future climate scenarios under the 2030 timeframe (e.g. percentage 

of young and foreign people, family income, access to communication networks). Few years later, 

McLaughlin et al. (2010) proposed an advanced CVI methodology integrating three different sub-

indices: a i) coastal forcing sub-index characterizing the forcing variables contributing to wave-

induced erosion; ii) a coastal characteristics sub-index dealing with the resilience and phisycal and 

environmental susceptibility of the coast to erosion processes; and a iii) socio-economic sub-index 

Figure 3: CVI application in the marinas of Torre Canne 
and Villa Nova (Pantusa et al., 2018) 
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evaluating vulnerability of anthropogenic infrastructures potentially at risk (e.g. settlements, roads, 

railways) (Figure 4). The peculiarity of this study stands in the multi-scale nature of the approach 

(i.e. national, regional and local scales), used to provide diversified spatial analysis of the degree of 

coastal vulnerability, as well as to highlight the implication of scale in the selection of indicators and 

the degree of simplification in 

mapping and analytical 

processes. Indeed, while 

indicators about coastal 

characteristics and coastal 

forcing can be used at broader 

spatial scale to evaluate the 

vulnerability of a certain region 

to morphological changes, 

indicators concerning socio-

economic features require 

smaller scales of analysis, since 

societies are strongly 

connected with their 

surrounding environments. 

Moreover, while at national scale the resolution of the analysis may be coarser, a higher resolution 

is usually required for local scale analysis, demanding for a more careful data collection and 

processing for all indicators. In 2012, Balica et al. (2012) enhanced the links of the theoretical 

concept of flood vulnerability with decision-making process, including in the design of their CVI 

approach a politico-administrative component (i.e. institutional organization, uncontrolled planning 

zones and infrastructures for flood protection) alongside the hydro-geological and socio-economic 

ones. In fact, it is worth noting how the inclusion of politico-administrative and resilience indicators 

can be used to assess the effects of possible adaptation options, allowing for addressing resources 

towards the implementation of most promising strategies.  

Recent studies further advanced these methodologies introducing, alongside with information on 

morphology and socio-economic features of the investigated area, the evaluation of potential 

climate change scenarios. Specifically, in 2016, Greco and Martino (2016) integrated in their CVI 

approach the study of time-dependent vulnerability, including in the assessment, together with 

information on morphology and socio-economic features, three sea storm scenarios according to 

different return periods (i.e. 1 year, 30 years and 500 years). The methodology demonstrated how 

vulnerability is not static in time but evolves according to changing patterns in the climate system, 

thus calling for a broader use of future projections for its evaluation. In the same year, Satta et al. 

Figure 4: General CVI approach proposed by McLaughlin et al. (2010) 
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(2017, 2016) expanded the traditional CVI methodology, proposing a Multi-Scale Coastal Risk Index 

for Local Scale evaluation (CRI-LS) integrating a multi-hazard perspective in the evaluation process. 

Indeed, impacts arising from SLR, storms, precipitations and drought scenarios were combined in 

the analysis as meteo-climatic hazards, flanked by socio economic indicators linked with population 

growth and touristic flows (Satta et al., 2017). The introduction of climate change scenarios in the 

CVI application can be observed as well in the methodology proposed by Torresan et al. (2017), 

where a CVI integrating physical, geological and socio-economic indicators was developed taking 

also into account expected SLR and SS flooding projections for the 2100 timeframe (i.e. Climate-

improved CVI).  

As previously emerged, the evaluation of social vulnerability is crucial for understanding how a 

society is able to anticipate, cope with and recover from impacts induced by natural and climate-

related hazards. In this setting, as the use of social indicators to measure community vulnerability 

to natural hazards was becoming more and more common, King & MacGregor (2000) noted that 

there was the need of isolating appropriate characteristics or variables as community vulnerability 

indicators, according to some rules. Consequently, they observed that models or constructs were 

necessary to develop social indicators, which had to be chosen as tools to serve the model. The 

authors also observed that information on preparedness and awareness was probably going to be 

excluded from those models, as surveys required to ascertain people attitudes and behavior were 

difficult to be carried out. So far, few authors specifically investigated, from a socio-economic 

perspective, the vulnerability of communities themselves to climate, environmental and 

anthropogenic related hazards. Among these, in 2003, Cutter et al. developed a Coastal Social 

Vulnerability Index (CSoVI) to assess social vulnerability of United States counties to environmental 

hazards, using socio-economic and demographic data for the 1990 timeframe, methodology replied 

also in the Chinese context afterwards (Chen et al., 2013). Both studies considered a wide range of 

socio-related variables, ranging from age, gender, ethnicity and socio-economic status, to 

occupation, education, infrastructural network and medical services. A selection of most suitable 

indicators was consequently extracted according to data availability and characteristics of the 

investigated area. Starting from the study of Cutter et al. (2003), Boruff et al. (2005) developed a 

hybrid approach integrating a socio vulnerability index (SoVI), including socio-economic variables, 

into a CVI, to analyze coastal social vulnerability. As an improvement of the aforementioned indices, 

Lee (2014) performed an overlay analysis of social vulnerability and patterns of risks associated to 

national disasters in Chiayi, Taiwan. With the proposed approach, the authors were able to capture 

the social vulnerability of the analyzed cities, thus transferring to government agencies and local 

authorities with a valuable knowledge base to address sustainable and strategic environmental 

planning.  
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Finally, as vulnerability is strictly connected to resilience, Fekete (2018) observed that only few 

indicator sets and maps considered in previous methodologies are helpful to directly measure 

communities resilience, demanding for a specific and independent set of indicators able to capture 

this aspect of vulnerability in societies. In this setting, within the Italian scene, Menoni et al. (2012) 

designed a vulnerability and resilience assessment tool supporting the understanding of strengths 

and fragilities of a territory and its community in facing natural hazards. The framework tool was 

applied to the city of Sondrio (Italy), highlighting, during the assessment process, sectors for which 

data were missing, and suggesting suitable policies and actions for disaster risk management and 

prevention. With the same perspective, always in Italy, Frigerio and De Amicis (Frigerio et al., 2018, 

2016; Frigerio & De Amicis, 2016) recently focused on deepening the analysis of social vulnerability 

to natural hazards. In particular, Frigerio & De Amicis (2016) applied a method to evaluate and 

spatially model social vulnerability at the national scale, based on socioeconomic and demographic 

factors driving Italian population pattern. They also integrated social vulnerability into the seismic 

risk analysis, always focusing on the Italian case (Frigerio et al., 2016). More recently, Frigerio et al. 

(2018) also examined the spatiotemporal patterns of social vulnerability in Italy, evaluating 

socioeconomic factors mainly influencing coping capacity of the Italian population to catastrophic 

natural events (e.g. flood, landslides, wildfires). To this aim he defined a set 16 indicators bringing 

together, among others, information about education, family structures and employment rate, 

based on the census data for the years 1991, 2001 and 2011.  

 

3.2 Decision Support Systems (DSS) 

Several DSS have been developed in recent years to encourage climate adaptation planning in 

coastal areas, especially at national to global scale (Torresan et al., 2016a). Computer based 

information systems showed, in fact, a great potential to support climate change impact and 

adaptation assessment in coastal zones, by integrating simulation models operating at different 

scales (climate, ecological and economic models), and by applying increasingly sophisticated 

methodological approaches and interfaces (Ramieri et al., 2011).  

A DSS is a software aimed at assisting planners and policy makers across different phases of the 

decision-making process, supporting, rather than replacing, their judgment and, at length, 

improving effectiveness over efficiency (Janssen, 1992). Specifically, a DSS may help to (i) integrate 

heterogeneous information (e.g. spatial vector and raster data, model outputs); (ii) answer to 

different management questions (e.g. what is the risk level? What are the mostly affected targets?); 

(iii) choose among alternative management measures (e.g. prevention, adaptation). 

In the environmental resource management sector, DSS are generally classified into two main 

categories:  
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- Spatial Decision Support Systems (SDSS): tools specifically designed to provide users with a 

decision-making environment allowing the analysis of geographical information to be carried 

out in a flexible manner (Densham, 1991). 

- Environmental Decision Supports Systems (EDSS): tools integrating Geographical 

Information System (GIS), several environmental models (including climate change and 

impact models), databases and other assessment tools (Fabbri, 1998; Uran and Janssen, 

2003; Poch et al., 2004). 

DSS addressing climate change are the result of the combination of SDSS and EDSS, and are 

specifically designed to support decision makers in the sustainable management of natural 

resources and in the definition of possible adaptation and mitigation measures (Torresan et al., 

2010). A key role in these systems is represented by Geographic Information Systems (GIS) allowing 

to capture, manipulate, process, analyze and display spatial data (Nobre et al., 2010). Focusing on 

DSS main structure, the following key components can be recognized across conventional DSS:  

- Database management system, which allows the organization of basic spatial and thematic 

data and facilitates their efficient processing. 

- Model management system, including several quantitative and qualitative models 
supporting data analysis. 

- Powerful, but simple and user-friendly, interface design, allowing communication with the 

system and visualization of outcomes. 

All reviewed DSSs consider GIS tools as basic media to express their spatially-resolved outcomes in 

a fast and intuitive, way facilitating communication and understanding also to non-experts (i.e. 

decision makers and stakeholders). 

As reported in the Table 1, in the frame of the Task 3.5, a set of 13 DSS for coastal erosion risk 

mapping and management have been selected by the TRITON partners, as representative of 

valuable tools for ICZM support in the area of concern. Among these, a first prototype version of an 

information system for the evaluation of feasible coastal management options, considering 

anthropogenic and climate forcing, is the so-called COSMO (Rijsberman & van Velzen, 1996). It 

allows integrating environmental, socio-economic and climate data by applying a 4-stage procedure 

including: i) problem characterization (e.g. coastal erosion, water quality variation); ii) impact 

evaluation under different development and protection plans; iii) indicators production; iv) GIS-

based spatial analysis.  
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This first release is followed by the DSS SimLucia (Simulator model for St Lucia; Figure 5), developed 

by the Research Institute of 

Knowledge System (RIKS), to assess 

the vulnerability of coastal low-lying 

areas to SLR, coastal erosion and SS 

flooding due to climate change. The 

tools was intended to be applied at 

the local scale within the St. Lucia 

case study, taking into account a 

gradual temperature rise of 2°C and 

related SLR of 0.8 foot (0.25 m) in a 

40 years’ time frame scenario (White 

et al., 1997).  

Then, the DSS RaMCo (Rapid 

Assessment Module for Coastal zone 

management) was developed for the rapid and integrated assessment of sustainable solutions for 

coastal zone management issues at the regional scale. The prototype version of this DSS was 

developed by de Kok et al. (2001) to explore differences between the current and the desired 

environmental state for the coastal zone in the Southwest Sulawesi (Indonesia), also in 

consideration of potential management strategies to be applied. 

Another DSS developed by the Research Institute of Knowledge System (RIKS) is the WADBOS DSS, 

supporting the design and analysis of policy measures in order to achieve an integrated and 

sustainable local scale management of the Wadden Sea (The Netherlands). It allows integrating 

socio-economic, hydrological, environmental and ecological data to inform three different sub-

models (i.e. socio-economic, ecological and landscape), running for three different possible time 

steps (a tidal cycle, one month, one year) and a 10-years scenario (Engelen et al., 2005). 

The Community Vulnerability Assessment Tool (CVAT), was developed with the aim of assessing 

hazards, vulnerability and risks related to climate change and provide support to hazard mitigation 

options. With environmental and socio-economic data, as well as observations as input data to 

characterize the baseline scenario, the tool is able to address multiple climate-related impacts (e.g. 

SS flooding, coastal erosion, cyclones, typhoons and other extreme events). The tools was applied 

by Flax et al. (2002) across three different local-scale case study areas located in the United States, 

evaluating i) community vulnerability and related community-based hazard mitigation strategies to 

face hurricane hazards in the New Hanover County (North Carolina); ii) the vulnerability of critical 

facilities, economic sectors, society, and the environment to coastal hazards(e.g. hurricanes, coastal 

flooding, coastal erosion and tsunami) in the Maui County (Hawaii). The application of the tool in 

Figure 5: SimLucia application interface (White et al., 1997) 
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this case, allowed validating the ease of adapting the methodology to other geographic locations 

and hazard types; iii) risks and vulnerabilities against multiple hazards (i.e. extreme wind events, 

floods, earthquakes, tornadoes, snow/ice, temperature extremes and environmental hazards) at a 

state-wide scale, and then the corresponding level of risk in various regions throughout the state. 

In order to determine how coastal systems react to climate change impacts, such as SLR, extreme 

events and coastal erosion, and to develop modern coastal management strategies, the KRIM DSS 

was developed as part of the German project KRIM. Kraft (2003) proposed an application of this tool 

at the scale of the Weser-Jade-Region (Bremen, Germany), with the main aim of providing 

orientation and action-taking know-how for coastal risk management and protection under climate 

change conditions. Therefore, the consequences of an accelerated SLR and intensified extreme 

events, using a 2050 climate scenario, were analyzed together with adaptation options for the 

natural and the social structures located within the coastal region.  

In 2009, another Decision Support System was developed in the frame of the DITTY EU funded 

project for the management of Southern European lagoons. The tool builds on a DPSIR-based causal 

framework allowing to describe the complex interactions between coastal system, society and 

ecosystems. Moreover, by integrating a GIS database, it allows users to graphically define the area 

of concern, and to assess the effects of different special allocations under a two- and three-year 

timeframe scenarios.  

Building on the modular and iterative 

approach for data integration developed 

in the frame of the DINAS-COAST project 

(Dynamic and Interactive Assessment of 

National, Regional and Global 

Vulnerability of Coastal Zones to Sea-

Level Rise), the DSS DIVA (Dynamic and 

Interactive Vulnerability Assessment; 

Figure 6) represents a dynamic, 

interactive and flexible software tool 

enabling end-users to produce 

quantitative information on a range of 

coastal vulnerability indicators, against user-selected climate and socio-economic scenarios and 

adaptation strategies, on national, regional and global scales. In the same year Warrick (2009) 

proposed the SimCLIM (namely Simulator model System for Climate Change Impacts and 

Adaptation) model, aimed at exploring current and potential risks related to climate change and 

natural hazards (e.g. SLR, coastal erosion, coastal flooding), with a specific focus on the coastal areas 

of the South-East Queensland and Brisbane (Australia). The core features of the open-framework 

Figure 6: Graphical user interface of the DIVA tool 
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software modelling system are the scenario periods for extreme events (i.e. heavy daily rainfall 

events), assessed under both current climate (1961-1990) and future scenarios (drier conditions by 

2050). Hence, the model, by considering 30 years of daily rainfall data, produces spatially 

interpolated risk maps, highlighting risk level according to four categories (i.e. low or no risk, 

moderate risk, high risk, extreme high risk). 

Building on a set of coastal models, Mokrech et al. (2009) developed the Tyndall Coastal Simulator, 

supporting the assessment of long-term potential coastal impacts and responses. The simulator is 

based on a set of linked climate models (CM), included in a nested framework recognizing three 

spatial scales: (i) the global (GCM) scale; (ii) the regional scale and (iii) the Simulator Domain (a 

physiographic unit, such as a coastal sub-cell). These models feed into each other and describe a 

wide array of natural processes and variables linked with coastal dynamics, including: sea level, 

tides, surges, waves, sediment transport and coastal morphology. Different climate scenarios, as 

well as the range of uncertainty, can be analyzed through this DSS. Moreover, it allows users to 

explore the model’s outputs, providing a GIS-based environment to visualize and query geospatial 

data resulting from the assessment. The DSS was applied along the Norfolk shoreline, where cliffs 

are easily and well-known to be eroded at an average rate of up to 1 m/yr.  

One of the most recent open-source DSS is the THESEUS DSS (Figure 7), developed in the frame of 

the THESEUS project by Zanuttigh et al. (2014). It was designed to assess risks across a range of 

spatial and temporal scales in order to minimize coastal risks and address the design of tailored 

management measures. The tool 

can be applied at intermediate 

spatial scales (10-100 km) and for 

short (2020), medium (2050) and 

long-term (2080) scenarios, 

considering both physical and non-

physical drivers, such as climate 

change, subsidence, population 

and economic growth. Moreover, it 

allows integrating in the 

assessment procedure different 

mitigation options, such as socio-

economic mitigations (i.e. change 

of land use), ecological solutions (i.e. sea-grasses) and the presence of coastal defenses (i.e. 

barriers). The DSS tool was tested in the case study area of Cesenatico (Italy), where specific impact 

functions were developed in order to link economic, social and ecological data to hydraulic 

Figure 7: THESEUS integrated risk map (Zanuttigh et al., 2014) 
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parameters (e.g. beach retreat, flood depth, flood duration, flood velocity) with the main aim of 

getting spatial maps of social, economic and ecological consequences due to climate change.  

Finally, the DSS DESYCO is a GIS based decision support system specifically designed to better 

understand the risks that climate change 

poses at the regional/subnational scale (e.g. 

the effect of sea level rise and coastal 

erosion on human assets and ecosystems) 

and set the context of strategic adaptation 

planning within ICZM. It implements a 

Regional Risk Assessment (RRA) (Landis, 

2005; Figure 8) methodology allowing the 

spatial assessment of multiple climate 

change impacts in coastal areas and the 

ranking of key elements at risk (beaches, 

wetlands, protected areas, urban and 

agricultural areas). The core of the system is 

a Multi-Criteria Decision Analysis (MCDA) 

model used to operationalize the steps of the 

RRA (hazard, exposure, susceptibility, risk 

and damage assessment) by integrating a 

blend of information from climate scenarios 

(global/ regional climate projections and hydrodynamic/hydrological simulations) and from non-

climate vulnerability factors (physical, environmental and socio-economic features of the analyzed 

system). User-friendly interfaces simplify the interaction with the system, providing guidance for 

risk mapping, results communication and understanding. DESYCO was widely applied to low-lying 

coastal plains and islands (i.e. the North Adriatic Sea, the Gulf of Gabes and the Republic of 

Mauritius), river basins and groundwater systems (i.e. Upper Plain of Veneto and Friuli-Venezia 

Giulia, Marche Region), and marine areas (North Adriatic Sea).  

Figure 8: Regional Risk Assessment (RRA) conceptual 
framework (Torresan et al., 2016b) 
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3.3 Remote sensing-based techniques for shoreline identification, extraction and analysis 

There are several approaches capable to detect the shoreline position and assess the relative 

shoreline change over a certain time period. These methodologies usually follow a step-wise 

procedure including the: i) selection of the most effective beach monitoring technique; ii) shoreline 

digitalization, and c) statistical analysis of shoreline change through the studied years. Various types 

of data can be considered for monitoring the shoreline change, either using direct (i.e., GPS, 

Topographic lasers) or indirect (i.e., aerial photography, airborne LiDAR, satellite image analysis) 

techniques. Using in-situ observation techniques, such as the GPS surveys (Morton et al., 1993; 

Harley et al., 2010) and the terrestrial laser scanners (Saye et al., 2005; Theuerkauf and Rodriguez, 

2012; Lee et al., 2013), researchers may accomplish highly accurate measurements of shoreline 

position. Such methods are time-consuming to map broader areas, and are inherently limited in 

temporal coverage, collecting measurements within short time-intervals, thus enabling to report 

long-term erosion/accretion trends, or widely-spaced in time, or distinguishing seasonal changes 

(Nadu et. al, 2013). Other techniques, employing remotely sensed data, such as aerial photographs 

and webcam images (Hapke and Richmond, 2000; Alexander and Holman, 2004; Kroon et al., 2007; 

Taborda and Silva, 2012; Turki et al., 2013), and airborne LiDAR mapping (Stockdon et al., 2002; 

Young and Ashford, 2006; Pye and Blott, 2016). Recently, new survey techniques based on remotely 

piloted aircraft systems (RPAS, also called unmanned aerial vehicles, UAVs, or drones) have begun 

to be employed in geomorphological and ecological studies (Everaerts, 2008; Colomina and Molina, 

2014; Anderson and Gaston, 2013; Floreano and Wood, 2015), and are becoming common survey 

tools in geosciences. These techniques may cover larger monitoring areas over shorter time 

intervals. However, their main limitations relate to the relative higher costs and the commonly 

insufficient availability of images spanning periods of concern. Satellite imagery, on the other hand, 

has the potential to combine moderate spatial resolution with large spatial coverage and regular 

and low repeatability in observations. It also provides the advantage of allowing the exploration of 

shoreline change in remote places with limited coastal observations. Satellite imagery has 

developed rapidly over the past few decades in terms of spatial resolution, frequency of passage 

over the same location and overall availability. To date, historical satellite images may cover a time 

period over 30 years with high spatial resolution. There exist several open-source databases for 

retrieving satellite images such as: Earth Explorer (https://earthexplorer.usgs.gov/), Copernicus 

Open Access Hub (https://scihub.copernicus.eu/), and Planet Explorer 

(https://www.planet.com/explorer/). Furthermore, remote sensing information can be integrated 

with Geographical Information Systems (GIS), as a helpful tool for analyzing and extracting more 

reliable and consistent information by using satellite imagery as a base data (Louati et. al., 2015). 

Over the latest years, remote sensing data from high-resolution satellite sensors (i.e. Landsat, 

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://www.planet.com/explorer/
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Sentinel, IKONOS) have been widely used across automatic or semi-automatic shoreline extraction 

and mapping procedures (Figure 9). Specifically, in several studies, techniques such as grey level 

threshold, level slicing or multi-spectral image classification have been applied using panchromatic 

bands or a single band or multiple bands combination for Normalized Difference Water Index 

(NDWI) estimation (Frazier and Page, 2000; Ryu et al., 2002; Braud and Feng, 1998; Kuleli, 2010; 

Kuleli et al., 2011; Bouchahma and Yan, 2012). For example, Braud and Feng (1998) found that 

setting a threshold on the Landsat TM Band 5 (Near Infrared) was the most reliable methodology to 

extract the shoreline. Frazier and Page (2000) quantitatively analyzed the classification accuracy in 

water body detection and delineation from Landsat TM data in the Wagga Wagga region in 

Australia. 

In order to evaluate and analyze the shoreline 

movement in a GIS environment, several 

techniques can be applied, like the transect-

based and the point-based approaches, which 

allow calculating the short- and long-term 

shoreline change. The extraction and 

application of the transect-based approach 

became easier when combined with GIS-

based tools such as the Digital Shoreline 

Analysis System (DSAS), an open-source 

extension of the ArcGis Software developed 

by the United States Geological Survey -USGS- 

for the multi-temporal analysis of the 

shoreline evolution (Danforth and Thieler, 

1992). Specifically, the DSAS tool is an add-in 

to Esri ArcGIS desktop enabling potential end-users to calculate rate-of-change statistics from 

multiple historical shoreline positions. It provides an automated method for establishing 

measurement locations, performs rate calculations, while providing statistical data required to 

assess the robustness of the rates. The tool allows developing transects positioned along the 

investigated shoreline, located in a mutual distance defined by the user according to the possibility 

to capturing coastal spatial variability across time. Moreover, it supports the development of a set 

of statistics allowing to summarize the main findings of the analysis. These statistics include: the net 

shoreline movement (NSM) for reporting the distance between the oldest and the earliest 

shorelines for each set transect; the End Point Rate (EPR, expressed in m/y) calculated by dividing 

the distance of the Net Shoreline Movement by the time elapsed between the oldest and the most 

Figure 9: Methodological steps for shoreline 
extraction from satellite images 
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recent shoreline; the Weighted Linear Regression (WLR, expressed in m/y), in which the weight W 

is a function of the variance of the measured uncertainty (Genz et al., 2007). 

 

3.4 Bayesian Networks (BN) approaches  

Bayesian Networks (also called belief networks or causal probabilistic networks) are probabilistic 

graphical models, widely used for knowledge representation and reasoning under uncertainty in 

natural resource management (Pollino and Henderson, 2010). 

They rely on Bayes’ theorem of probability theory to propagate information between nodes which 

states that the probability of an event, based on prior knowledge of conditions, might be related to 

the event, as expressed in the following equation (Bayes, 1763): 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 

where -     𝑃(𝐴) and 𝑃(𝐵) are the probabilities of observing A and B without regard to each other; 

- 𝑃(𝐴|𝐵) is the probability of observing event A given that B is true; 

- 𝑃(𝐵|𝐴) is the probability of observing event B given that A is true. 

 

BNs represent the system’s components (variables) and their relationships (conditional 

interdependencies) by combining principles of graph and probability theory (Pearl et al., 2011). They 

are widely used to facilitate the rapid conceptualization of the system to be managed and the 

evaluation of the dependence or interdependence between data and their inherent uncertainty 

evaluated as belief probabilities. They allow considering multiple stressors and endpoints in the 

same framework, thus supporting modelling and analysis of complex coastal environments. 

Different knowledge domains, expertise and data sources can be integrated in the same BN model, 

acting as a decision support tool able to inform coastal risk assessment and management. 

Being a probabilistic graphical model, BNs include a i) qualitative part, the structure of the network 

in terms of a Directed Acyclic Graph (DAG), which is composed of nodes representing the set of 

random variables and arcs between nodes indicating directed probabilistic dependencies between 

the corresponding variables; ii) a quantitative part, the parameters of the network encoding the 

conditional and marginal probabilities of the system’s variables. Specifically, the marginal 

probability of a subset of a collection of random variables is the probability distribution of the 

variables contained in the subset without reference to the values assumed by the other variables. 

Hence, if a variable has no parents nodes, it is described by a marginal probability distribution 

(Pollino et al., 2007). On the other hand, the conditional probability gives the probabilities 
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contingent upon the values of the other variables, thus describing the strength of the causal 

relationships between all variables connected in the network (Pollino et al., 2007). 

The development of a BN requires the implementation of specific operative phases aimed to: 

1. Develop the conceptual model of the system to be analyzed, by defining the structure of the 

network and identifying its main variables and relationships represented by using a 

conceptual/influence ‘nodes (variable) and arrow (relationship) diagram; 

2. Parametrize the designed model, by defining states (also known as bins) for all variables 

(that can be interval, Boolean, or labelled) and calculating the associated marginal 

probabilities resulting from data distribution as well relationships between nodes described 

by the conditional probability distributions; 

3. Evaluate the performance and prediction accuracy of the BN model through data-based and 

the qualitative evaluation methods; 

4. Perform the sensitivity analysis, to evaluate how sensitive are model outcomes to changes 

in input nodes or other model parameters (e.g. changes in node’s type of states); 

5. Define and analyze multiple ‘what-if’ scenarios, by inferring behavior of the variables at 

stake in the network against different conditions defined by setting specific state/s of a 

node/s (also known as ‘set an evidence’) and then propagating information between nodes 

based on the Bayes theorem (Sperotto et al., 2017). Changes in the simulated scenarios can 

be analyzed by observing the posterior probabilities of the variable of concern. 

 

Focusing on the application of BNs for coastal 

erosion risk assessment and management, the first 

approach was proposed by Gutierrez et al. (2011), 

to assess long-term shoreline changes associated 

to SLR at the national scale, in the Atlantic coast of 

the United States of America. As represented in 

Figure 10, the BN conceptual model designed by 

Gutierrez et al. (2011) is composed by six nodes, 

divided into three different categories: i) driving 

forces (i.e. sea level rise rate, mean wave height 

and tidal range); ii) boundary conditions (i.e. 

geometric settings and coastal slope); iii) and 

response/vulnerability indicator (i.e. long-term 

shoreline change rate). Each node is sorted in five 

different states corresponding to increasing risk levels. Results demonstrate that the probability of 

shoreline retreat increases with higher rates of SLR. Specifically, for scenarios simulating the two 

Figure 10: Structure of the Bayesian Network 
(Gutierrez et al., 2011) 
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highest relative SLR states in the range of 2.95 - 3.15 m and 3.16 - 4.1 m (set evidence of 100% in 

these two states, there is nearly 100% probability of resulting in shoreline erosion, while for the 

other simulated scenario where the rate of sea level rise is maintained low (between 0 and 2.5 m), 

the probability distribution of all the 4 states associated to the shoreline change variable never 

exceed the 40%. A key added value of this study is the spatialization of the resulting output from 

the scenario analysis, building on the historical data used in the hind cast evaluation. The mapping 

outcomes of this study allow end- users to visualize the probability of shoreline change at each 

location (from moderate to severe erosion rate) identifying specific location where the BN needs to 

include more or better information to represent the erosion process. Building on this study, Zhan et 

al. (2014) developed a similar BN approach defining the relationships between the same six 

variables (i.e. mean wave height, mean tidal range, relative SLR, coastal slope, coastal 

geomorphology and shoreline erosion rate) to predict the shoreline evolution in the Republic of 

China under different SLR rate. As for the previous study, the authors provided spatially-resolved 

output from the scenario analysis, showing the the probability of erosion of the Chinese coasts rises 

as the rate of relative SL increases.  

In order to predict coastal 

vulnerability to SLR, more 

recently, Poelhekke et al. (2016) 

designed and applied a BN to the 

Praia de Faro (Portugal) case 

study area. The BN reference 

model (Figure 11) was selected 

between three different model’s 

configurations defined by 

modifying the number of 

variables concerning the 

boundary conditions considered in the network (i.e. water level during the peak, max significant 

wave height, peak period and storm duration), or the number of states classifying the variables 

themselves (e.g. Configuration 1 was defined by selecting four variables describing the boundary 

conditions i.e. water level during the peak, max significant wave height, peak period and storm 

duration, and by classifying their values into in 4 states. Compared to the previous studies, the BN 

model proposed by Poelhekke et al. (2016) was also validated by analyzing the log-likelihood ratio 

(LLR) across all the three models’ configurations, allowing to determine the prediction accuracy of 

Figure 11: BN Reference scenario for the Praia de fro (Portugal) 
case study 
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the BN model. As result of this validation process, the more complex Configuration 2 showed a 

better performance and was selected as reference BN model for the scenario analysis. This model 

connect three main groups of variables related to: i) the hydraulic boundary conditions; ii) the 

characteristics of the coastal zone and; iii) onshore hazards. The key added value of the method 

proposed by Poelhekke et al. (2016) is that it allows spatializing the investigated case study, 

integrating in the BN model a node specifically devoted to the 4 zones dividing the overall case study 

(i.e. West and East Seaside, West and East Bayside, Centre). In this way, by setting the maximum 

probability on one specific area, the effects of different scenarios on the connected coastal driving 

forces were observable in the considered area. 

Increasing the complexity of the BN applications for coastal erosion risk assessment and 

management, Jäger et al. (2017), in the frame of the EU FP7 RISC-KIT project, enriched the 

traditional BN frameworks developed until then, by integrating a set of nodes representing different 

environmental and human receptors (i.e. 

residential and commercial properties, people, 

saltmarshes) associated, in turn, to specific 

flood-related impacts and damages (e.g. risk to 

life, commercial damages; Figure 12). 

Moreover, the case study site of the North 

Norfolk coast (England), was divided into 6 sub-

zones, based on the topographic features and 

key current flood prevention measures, such as 

the flood wall and movable flood barrier, 

located along the investigated coast. The 

resulting output of the study comprises the 

analysis of 85 storm surge flooding scenarios 

representing the range of potential extreme 

event conditions, including historical storms (8 

scenarios), climate change-induced scenarios (18 scenarios) and synthetic events (59 scenarios). As 

example, climate change scenarios were generated using the DELFT3D-Flow model, modifying the 

boundary conditions from the historical storm event hindcast mode, including SLR predictions based 

on the IPCC projections (2013) under the RCP8.5 and for the 2060 timeframe.  

In the frame of the same EU FP7 RISC-KIT project, Plomaritis et al. (2017) developed a similar BN 

approach acting as a predictive and working tool able to determine coastal-related impacts on 

human receptors, and evaluate risk reduction against the implementation of potential management 

measures. Specifically, the designed BN model focuses on the impact of erosion and overwash to 

houses and infrastructures, including 4 nodes specifically devoted to management measures (e.g. 

Figure 12: Framework of the Bayesian Network (Jäger 
et al., 2017) 
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beach or dune nourishment, revetments and floodwall). The approach was implemented in the case 

study of Faro Beach (Ria Formosa), highlighting, through the scenario analysis, as the 

implementation of beach nourishment actions would lead to a reduction of houses affected by 

overwash.  

With the main objective of comparing strategic alternatives finalized at reducing erosion and 

flooding risks under current and future scenarios, Sanuy et al. (2018) designed a flexible BN 

approach then applied to two different study areas: Tordera river delta (Spain) (Figure 13) and Lido 

degli Estensi-Spina (Italy) (Figure 14). Specifically, the structure of the network is flexible enough to 

be applied across different coastal settings and tailored according to several boundary conditions, 

hazards, receptors, impacts/damages, and management measures, depending on the needs driven 

by research or coastal management objectives. Hence, for very similar, or even for the same case 

study, the BN model can differ since variables and associated classes/bin may be set in different 

ways by the end-user for characterizing multiple model configurations. As for the previous studies, 

both networks developed by Sanuy et al. (2018) was implemented by taking into account 

management measures (e.g. flood resilience measures, infrastructural defense), contributing to 

reduce flooding and erosion risks in the investigated areas.  

 

Figure 13: Bayesian network scheme for the Lido 
degli Estensi–Spina site (Sanuy et al., 2018) 

Figure 14: Bayesian network scheme for the 
Tordera Delta site (Sanuy et al., 2018) 
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One of the most recent BN application for national-scale coastal erosion risk management is the so-

called BERM-N, i.e. Bayesian ERosion 

Management Network, developed by 

Giardino et al. (2019). Particularly, main 

aim of the study was to evaluate the 

effectiveness of nourishments measures 

in mitigating coastal erosion processes. 

The BN model was organized into three 

main categories representing the: i) 

spatial characterization of the study area 

(e.g. Delftland, North Holland) and the 

timeframes related to the 

implementation of beach nourishment 

measures (e.g. 1965-1990); ii) 

nourishment types (e.g. beach or dune 

shoreface) and volumes; effects induced 

by the implemented measures on the 

morphological indicators (e.g. dune foot 

changes) (Figure 15). The BERM-N was trained based on yearly cross-shore profile data available for 

604 transects along the coast of the Netherland, and representing beach nourishment types (i.e., 

beach, dune, and shoreface) and volumes implemented during the analyzed time period (1965-

2016). The focus of the study by Giardino et al. (2019) was on the analysis of the effects of coastal 

nourishments activities to manage coastal erosion, as major driver of coastal development along 

the Dutch coast. 

  

Figure 15: Conceptual model and prior probabilities 
distribution of the BERM-N (Giardino et al., 2019) 
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4 Conclusions  

In the frame of the task 3.5 ‘Development of the framework and tool for final users with training’, 

this deliverable introduces the DPSIR-based conceptual framework highlighting the complex 

interactions underpinning coastal erosion phenomena, as well as the tools and methods reviewed 

by the TRITON partners to provide support to policy and decision makers in the implementation of 

European recommendations and directives for coastal zone risk assessment and management. 

Specifically, the report is structured in two main sections: i) the first one briefly describes the 

developed DPSIR-based conceptual framework defining the relationships between natural and 

anthropogenic activities, the coastal environment and its ecosystems, and the resulting 

environmental, physical and socio-economic impacts; ii) the second one focuses on the review of 

the state of art tools and methods for coastal erosion risk mapping and management, including 

indicator and index-based methods, Decision Support Systems (DSS), remote sensing-based 

techniques and Bayesian Belief Networks approaches, revealing a different level of complexity and 

detail in the data processing and final outcomes.  

Specifically, by providing useful information and practical examples of the effectiveness of these 

tools across different coastal case studies, this deliverable aims at assisting coastal planners and 

managers in the selection of the most suitable and easy-to-use tool supporting a sound evaluation 

of coastal erosion risks (e.g. shoreline retreatment, water quality variation) arising from multiple 

scenarios, including different management and policy setting (e.g. implementation of artificial 

protection along the coast or nature based solutions to reduce longshore wave power), as well as 

climate conditions (e.g. sea level rise, increase of coastal flooding events). 

These information and tools will be capitalized in the frame of the TRITON pilot cases (i.e. the coast 

of Ugento, Apulia region (Italy), and the coastal area of Messolongi (Greece)), in order to evaluate, 

at the local scale, coastal erosion processes and provide the scientific knowledgebase for the 

development and implementation of more robust and adaptive coastal erosion risk-based 

management strategies in the project operational area among Greece and Italy. 
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